
Definition: I is an ideal of countable sets over S if
1 I ⊂ [S]≤ω

2 I is closed under subsets and finite unions.
3 It is convenient to assume that [S]<ω ⊆ I.
4 For simplicity, in these lectures, we assume S = ω1
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If X ⊂ S, then I � X is the ideal restricted to subsets of X :

I � X = P(S) ∩ I.

We say X ⊂ S is trivial for I if
1 I � X = [X ]<ω, we then say X is “out of I” (orthogonal to I), or
2 I � X = [X ]≤ω, we then say X is “inside I”.
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Dichotomy for a family of ideals

The SIMPLE form of the dichotomy for a family of ideals of countable
sets over ω1 is the following statement: For every ideal I in the family

there is an uncountable X ⊆ S which is trivial.

This is a Ramsey type statement.
In other words, there is an uncountable X ⊆ ω1 such that:

1 X is inside I, or
2 X is out of I.
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Our aim

We shall prove the consistency of dichotomies for two families of
ideals: ω1-generated ideals, and P-ideals. In fact we will prove that
such dichotomies are consequence of the PFA. (For ω1-generated
ideals this is work of Todorcevic. For P-ideals, Todorcevic and
Abraham.)
We will give an application of PID (due to Todorcevic) that it implies
b ≤ ω2. (It is open whether it implies c ≤ ω2).
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For a cardinal κ, H(κ) is the collection of all sets whose transitive
closure has cardinality < κ.
(H(κ),∈) is the structure whose universe is H(κ) with the membership
relation. It is useful to add a well-ordering < of that universe, and so
when we say H(κ) we refer to the structure (H(κ),∈, <).
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Forcing a set out of I

Theorem: Let I be an ideal of countable subsets of ω1 that is
ω1-generated. There is a proper poset P that forces an uncountable
subset X out of I. This works (the generic X is uncountable) under the
assumption that there is no uncountable subset of ω1 that is inside of I.
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Definition of P

Suppose I is generated by {Aα | α < ω1} where Aα ⊆ α.
p ∈ P iff p = (xp,dp,Np) is such that:

1 Np = {Np
0 , . . . ,N

p
k−1} is a finite set of countable elementary

substructures of H(ℵ2), Np
i ∈ Np

i+1. I ∈ Np
0 .

2 xp ∈ [ω1]
<ω is “separated” by Np: Say xp = α0 < · · · < αk , then we

have α0 < Np
0 ∩ ω1 < α1 < Np

1 ∩ ω1 · · ·Np
k−1 ∩ ω1 < αk .

3 For every α in xp and structure Np
i not containing α (α is “above

Ni ”): α 6∈
⋃
{X | X ∈ Np

i is inside I}.
4 dp ∈ [ω1]

<ω.
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Define q ≤ p (q is more informative) iff

1 xp ⊆ xq, dp ⊆ dq, and Np ⊆ Nq.
2 For every α ∈ dp, xp ∩ Aα = xq ∩ Aα.
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The two main properties of P are:
1 P is “proper” so that it does not collapse ω1

2 P generically adds an uncountable subset of ω1 that is out of I, IF
I CONTAINS NO UNCOUNTABLE SET INSIDE I.
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Main idea

Lemma. Suppose I is an ideal of countable subsets of ω1 and ω1 is not
inside I. If M ≺ H(ℵ1) is countable and I ∈ M, then M ∩ ω1 6∈ I.

Proof. M “knows” that ω1 is not inside I, and hence there is some
Y ∈ M so that M |= “Y is countable and Y 6∈ I”.
Hence indeed Y is countable not in I.
There is an enumeration of Y , Y = {yi | i ∈ ω}.
So there is such an enumeration in M. But as ω ⊂ M, each yi is in M.
So Y ⊂ M ∩ ω1. As Y 6∈ I, surely M ∩ ω1 6∈ I.
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P-ideals

Definition: An ideal I of countable subsets is a P-ideal if whenever
{Ai | i < ω} ⊂ I, then there is some A ∈ I so that Ai ⊆∗ A for every
i ∈ ω.

Definition: The P-ideal dicotomy (PID): If I is an ideal of countable
subsets of S (S of any cardinality) then either:

S is the union of countably many sets that are out of I
(orthogonal), or
there is an uncountable set inside I.
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Consistency of the PID

The PID is a consequence of the Proper Forcing Axiom. In fact it is
also consistent with CH.
Exercise: the PID implies there are no Souslin trees (Abraham,
Todorcevic). So Souslin hypothesis is consistent with CH (Jensen).

We will describe the proof of the following Theorem:

Given a P-ideal I over a set S, if S is not a countable union of
sets that are orthogonal to I, then there exists a proper forcing
notion P that introduces an uncountable subset inside I.
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Definition of P

Definition: K ⊆ I is cofinal in I if it is cofinal in the almost inclusion
ordering ⊆∗. That is, for every X ∈ I there is Y ∈ K such that X ⊆∗ Y .

Let P be the poset of all pairs p = (ap,Hp) where ap ∈ I (so ap is
countable), and Hp is a countable collection of cofinal subsets of I.

Define q ≤ p iff ap ⊆ aq, Hp ⊆ Hq, and the following condition holds.
For every K ∈ Hp, if e = aq \ ap then

{X ∈ K | e ⊆ X} ∈ Hq.
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Main idea: Adjoin your enemy into your court

The first idea for a poset that introduces an uncountable set inside I is
to force with (I,⊂). given a countable M ≺ H(κ) and condition
a ∈ I ∩M define an increasing sequence ai ∈ I ∩M that successively
enters each of the dense sets in M.

The problem:
⋃

i<ω ai may not be a member of I.

Here we use the fact that I is a P-ideal. Pick some E ∈ I so that for
every A ∈ I ∩M A ⊂∗ E .
Then when we define ai+1 we require not only ai ⊂ ai+1 but also
ai+1 \ ai ⊂ E .
New Problem: Perhaps for some dense set D ∈ M, if b ∈ D ∩M is any
condition such that a = ai ⊂ b, then it is not the case that b ⊂ E (the
finite set b \ E is non-empty). Solution: Declare E a “bad set”; let H be
the collection of all bad sets. Then H ∈ M. Redefine your poset so that
the pair (a,H) is a condition. Request that any extension of this
condition is of the form (b,H, . . .) so that a ⊆ b AND b \ a ∈ h for some
h ∈ H.
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