Definition: I is an ideal of countable sets over S if
(1) $I \subset[S]^{\leq \omega}$
(2) I is closed under subsets and finite unions.
(3) It is convenient to assume that $[S]^{<\omega} \subseteq I$.
(4) For simplicity, in these lectures, we assume $S=\omega_{1}$

If $X \subset S$, then $I \upharpoonright X$ is the ideal restricted to subsets of X :

$$
I \upharpoonright X=\mathcal{P}(S) \cap I .
$$

We say $X \subset S$ is trivial for $/$ if
(1) $I \upharpoonright X=[X]^{<\omega}$, we then say X is "out of l " (orthogonal to l), or
(2) $I \upharpoonright X=[X]^{\leq \omega}$, we then say X is "inside l ".

Dichotomy for a family of ideals

The SIMPLE form of the dichotomy for a family of ideals of countable sets over ω_{1} is the following statement: For every ideal I in the family there is an uncountable $X \subseteq S$ which is trivial.

This is a Ramsey type statement.
In other words, there is an uncountable $X \subseteq \omega_{1}$ such that:
(1) X is inside I, or
(2) X is out of I.

Our aim

We shall prove the consistency of dichotomies for two families of ideals: ω_{1}-generated ideals, and P-ideals. In fact we will prove that such dichotomies are consequence of the PFA. (For ω_{1}-generated ideals this is work of Todorcevic. For P-ideals, Todorcevic and Abraham.)
We will give an application of PID (due to Todorcevic) that it implies $\mathfrak{b} \leq \omega_{2}$. (It is open whether it implies $\mathfrak{c} \leq \omega_{2}$).

For a cardinal $\kappa, H(\kappa)$ is the collection of all sets whose transitive closure has cardinality $<\kappa$. $(H(\kappa), \in)$ is the structure whose universe is $H(\kappa)$ with the membership relation. It is useful to add a well-ordering $<$ of that universe, and so when we say $H(\kappa)$ we refer to the structure $(H(\kappa), \in,<)$.

Forcing a set out of I

Theorem: Let / be an ideal of countable subsets of ω_{1} that is ω_{1}-generated. There is a proper poset P that forces an uncountable subset X out of I. This works (the generic X is uncountable) under the assumption that there is no uncountable subset of ω_{1} that is inside of I.

Definition of P

Suppose I is generated by $\left\{\boldsymbol{A}_{\alpha} \mid \alpha<\omega_{1}\right\}$ where $\boldsymbol{A}_{\alpha} \subseteq \alpha$. $p \in P$ iff $p=\left(x_{p}, d_{p}, N^{p}\right)$ is such that:
(1) $N^{p}=\left\{N_{0}^{p}, \ldots, N_{k-1}^{p}\right\}$ is a finite set of countable elementary substructures of $H\left(\aleph_{2}\right), N_{i}^{p} \in N_{i+1}^{p} . l \in N_{0}^{p}$.
(2) $x_{p} \in\left[\omega_{1}\right]^{<\omega}$ is "separated" by N^{p} : Say $x_{p}=\alpha_{0}<\cdots<\alpha_{k}$, then we have $\alpha_{0}<N_{0}^{p} \cap \omega_{1}<\alpha_{1}<N_{1}^{p} \cap \omega_{1} \cdots N_{k-1}^{p} \cap \omega_{1}<\alpha_{k}$.
(3) For every α in x_{p} and structure N_{i}^{p} not containing α (α is "above $\left.N_{i}{ }^{\prime \prime}\right): \alpha \notin \bigcup\left\{X \mid X \in N_{i}^{p}\right.$ is inside $\left./\right\}$.
(4) $d_{p} \in\left[\omega_{1}\right]^{<\omega}$.

Define $q \leq p$ (q is more informative) iff
(1) $x_{p} \subseteq x_{q}, d_{p} \subseteq d_{q}$, and $N^{p} \subseteq N^{q}$.
(2) For every $\alpha \in d_{p}, x_{p} \cap A_{\alpha}=x_{q} \cap A_{\alpha}$.

The two main properties of P are:
(1) P is "proper" so that it does not collapse ω_{1}
(2) P generically adds an uncountable subset of ω_{1} that is out of I, IF I CONTAINS NO UNCOUNTABLE SET INSIDE I.

Main idea

Lemma. Suppose I is an ideal of countable subsets of ω_{1} and ω_{1} is not inside I. If $M \prec H\left(\aleph_{1}\right)$ is countable and $I \in M$, then $M \cap \omega_{1} \notin I$.

Proof. M "knows" that ω_{1} is not inside I, and hence there is some $Y \in M$ so that $M \models$ " Y is countable and $Y \notin l$ ". Hence indeed Y is countable not in I.
There is an enumeration of $Y, Y=\left\{y_{i} \mid i \in \omega\right\}$.
So there is such an enumeration in M. But as $\omega \subset M$, each y_{i} is in M. So $Y \subset M \cap \omega_{1}$. As $Y \notin I$, surely $M \cap \omega_{1} \notin I$.

P-ideals

Definition: An ideal I of countable subsets is a P-ideal if whenever $\left\{A_{i} \mid i<\omega\right\} \subset I$, then there is some $A \in I$ so that $A_{i} \subseteq^{*} A$ for every $i \in \omega$.

Definition: The P-ideal dicotomy (PID): If I is an ideal of countable subsets of S (S of any cardinality) then either:

- S is the union of countably many sets that are out of I (orthogonal), or
- there is an uncountable set inside I.

Consistency of the PID

The PID is a consequence of the Proper Forcing Axiom. In fact it is also consistent with CH .
Exercise: the PID implies there are no Souslin trees (Abraham, Todorcevic). So Souslin hypothesis is consistent with CH (Jensen).

We will describe the proof of the following Theorem:
Given a P-ideal I over a set S, if S is not a countable union of sets that are orthogonal to I, then there exists a proper forcing notion P that introduces an uncountable subset inside I.

Definition of P

Definition: $K \subseteq I$ is cofinal in I if it is cofinal in the almost inclusion ordering \subseteq^{*}. That is, for every $X \in I$ there is $Y \in K$ such that $X \subseteq^{*} Y$.

Let P be the poset of all pairs $p=\left(a_{p}, H_{p}\right)$ where $a_{p} \in I$ (so a_{p} is countable), and H_{p} is a countable collection of cofinal subsets of I.

Define $q \leq p$ iff $a_{p} \subseteq a_{q}, H_{p} \subseteq H_{q}$, and the following condition holds.
For every $K \in H_{p}$, if $e=a_{q} \backslash a_{p}$ then

$$
\{X \in K \mid e \subseteq X\} \in H_{q}
$$

Main idea: Adjoin your enemy into your court

The first idea for a poset that introduces an uncountable set inside $/$ is to force with (I, \subset). given a countable $M \prec H(\kappa)$ and condition $a \in I \cap M$ define an increasing sequence $a_{i} \in I \cap M$ that successively enters each of the dense sets in M.

The problem: $\bigcup_{i<\omega} a_{i}$ may not be a member of I.

Main idea: Adjoin your enemy into your court

The first idea for a poset that introduces an uncountable set inside $/$ is to force with (I, \subset). given a countable $M \prec H(\kappa)$ and condition $a \in I \cap M$ define an increasing sequence $a_{i} \in I \cap M$ that successively enters each of the dense sets in M.

The problem: $\bigcup_{i<\omega} a_{i}$ may not be a member of I. Here we use the fact that I is a P-ideal. Pick some $E \in I$ so that for every $A \in I \cap M A \subset^{*} E$.
Then when we define a_{i+1} we require not only $a_{i} \subset a_{i+1}$ but also $a_{i+1} \backslash a_{i} \subset E$.

Main idea: Adjoin your enemy into your court

The first idea for a poset that introduces an uncountable set inside $/$ is to force with (I, \subset). given a countable $M \prec H(\kappa)$ and condition $a \in I \cap M$ define an increasing sequence $a_{i} \in I \cap M$ that successively enters each of the dense sets in M.

The problem: $\bigcup_{i<\omega} a_{i}$ may not be a member of I. Here we use the fact that I is a P-ideal. Pick some $E \in I$ so that for every $A \in I \cap M A \subset^{*} E$.
Then when we define a_{i+1} we require not only $a_{i} \subset a_{i+1}$ but also $a_{i+1} \backslash a_{i} \subset E$.
New Problem: Perhaps for some dense set $D \in M$, if $b \in D \cap M$ is any condition such that $a=a_{i} \subset b$, then it is not the case that $b \subset E$ (the finite set $b \backslash E$ is non-empty).

Main idea: Adjoin your enemy into your court

The first idea for a poset that introduces an uncountable set inside $/$ is to force with (I, \subset). given a countable $M \prec H(\kappa)$ and condition $a \in I \cap M$ define an increasing sequence $a_{i} \in I \cap M$ that successively enters each of the dense sets in M.

The problem: $\bigcup_{i<\omega} a_{i}$ may not be a member of I.
Here we use the fact that I is a P-ideal. Pick some $E \in I$ so that for every $A \in I \cap M A \subset^{*} E$.
Then when we define a_{i+1} we require not only $a_{i} \subset a_{i+1}$ but also $a_{i+1} \backslash a_{i} \subset E$.
New Problem: Perhaps for some dense set $D \in M$, if $b \in D \cap M$ is any condition such that $a=a_{i} \subset b$, then it is not the case that $b \subset E$ (the finite set $b \backslash E$ is non-empty). Solution: Declare E a "bad set"; let H be the collection of all bad sets. Then $H \in M$. Redefine your poset so that the pair (a, H) is a condition. Request that any extension of this condition is of the form (b, H, \ldots) so that $a \subseteq b$ AND $b \backslash a \in h$ for some $h \in H$.

