Definition: *I* is an ideal of countable sets over S if

- $I \subset [S]^{\leq \omega}$
- I is closed under subsets and finite unions.
- It is convenient to assume that $[S]^{<\omega} \subseteq I$.
- For simplicity, in these lectures, we assume $S = \omega_1$

∃ → 4

If $X \subset S$, then $I \upharpoonright X$ is the ideal restricted to subsets of X:

$$I \upharpoonright X = \mathcal{P}(S) \cap I.$$

We say $X \subset S$ is trivial for *I* if

- $I \upharpoonright X = [X]^{<\omega}$, we then say X is "out of I" (orthogonal to I), or
- 2 $I \upharpoonright X = [X]^{\leq \omega}$, we then say X is "inside *I*".

∃ → 4

The SIMPLE form of the dichotomy for a family of ideals of countable sets over ω_1 is the following statement: For every ideal *I* in the family *there is an uncountable* $X \subseteq S$ *which is trivial.*

This is a Ramsey type statement.

In other words, there is an uncountable $X \subseteq \omega_1$ such that:

- X is inside I, or
- 2 X is out of I.

◆ ヨト ◆ ヨト

Our aim

We shall prove the consistency of dichotomies for two families of ideals: ω_1 -generated ideals, and *P*-ideals. In fact we will prove that such dichotomies are consequence of the PFA. (For ω_1 -generated ideals this is work of Todorcevic. For *P*-ideals, Todorcevic and Abraham.)

We will give an application of PID (due to Todorcevic) that it implies $\mathfrak{b} \leq \omega_2$. (It is open whether it implies $\mathfrak{c} \leq \omega_2$).

◆ ヨト ◆ ヨト

For a cardinal κ , $H(\kappa)$ is the collection of all sets whose transitive closure has cardinality $< \kappa$.

 $(H(\kappa), \in)$ is the structure whose universe is $H(\kappa)$ with the membership relation. It is useful to add a well-ordering < of that universe, and so when we say $H(\kappa)$ we refer to the structure $(H(\kappa), \in, <)$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Theorem: Let *I* be an ideal of countable subsets of ω_1 that is ω_1 -generated. There is a proper poset *P* that forces an uncountable subset *X* out of *I*. This works (the generic *X* is uncountable) under the assumption that there is no uncountable subset of ω_1 that is inside of *I*.

4 ∃ > < ∃ >

Definition of P

- Suppose *I* is generated by $\{A_{\alpha} \mid \alpha < \omega_1\}$ where $A_{\alpha} \subseteq \alpha$. $p \in P$ iff $p = (x_p, d_p, N^p)$ is such that:
 - $N^{p} = \{N_{0}^{p}, \dots, N_{k-1}^{p}\}$ is a finite set of countable elementary substructures of $H(\aleph_{2}), N_{i}^{p} \in N_{i+1}^{p}. I \in N_{0}^{p}.$
 - 2 $x_p \in [\omega_1]^{<\omega}$ is "separated" by N^p : Say $x_p = \alpha_0 < \cdots < \alpha_k$, then we have $\alpha_0 < N_0^p \cap \omega_1 < \alpha_1 < N_1^p \cap \omega_1 \cdots N_{k-1}^p \cap \omega_1 < \alpha_k$.
 - So For every α in x_p and structure N_i^p not containing α (α is "above N_i "): $\alpha \notin \bigcup \{X \mid X \in N_i^p \text{ is inside } I\}.$

イロト イポト イヨト イヨト 二日

Define $q \leq p$ (q is more informative) iff

•
$$x_p \subseteq x_q, d_p \subseteq d_q$$
, and $N^p \subseteq N^q$.

2 For every
$$\alpha \in d_p$$
, $x_p \cap A_\alpha = x_q \cap A_\alpha$.

1

DQC

< ロト < 回 ト < 回 ト < 回 ト</p>

The two main properties of *P* are:

- **1** *P* is "proper" so that it does not collapse ω_1
- 2 *P* generically adds an uncountable subset of ω_1 that is out of *I*, IF *I* CONTAINS NO UNCOUNTABLE SET INSIDE *I*.

∃ ► ∢

Lemma. Suppose *I* is an ideal of countable subsets of ω_1 and ω_1 is not inside *I*. If $M \prec H(\aleph_1)$ is countable and $I \in M$, then $M \cap \omega_1 \notin I$.

Proof. *M* "knows" that ω_1 is not inside *I*, and hence there is some $Y \in M$ so that $M \models$ "*Y* is countable and $Y \notin I$ ". Hence indeed *Y* is countable not in *I*. There is an enumeration of *Y*, $Y = \{y_i \mid i \in \omega\}$. So there is such an enumeration in *M*. But as $\omega \subset M$, each y_i is in *M*. So $Y \subset M \cap \omega_1$. As $Y \notin I$, surely $M \cap \omega_1 \notin I$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

P-ideals

Definition: An ideal *I* of countable subsets is a *P*-ideal if whenever $\{A_i \mid i < \omega\} \subset I$, then there is some $A \in I$ so that $A_i \subseteq^* A$ for every $i \in \omega$.

Definition: The *P*-ideal dicotomy (PID): If *I* is an ideal of countable subsets of S (S of any cardinality) then either:

- *S* is the union of countably many sets that are out of *I* (orthogonal), or
- there is an uncountable set inside *I*.

Consistency of the PID

The PID is a consequence of the Proper Forcing Axiom. In fact it is also consistent with CH.

Exercise: the PID implies there are no Souslin trees (Abraham, Todorcevic). So Souslin hypothesis is consistent with CH (Jensen).

We will describe the proof of the following Theorem:

Given a P-ideal I over a set S, if S is not a countable union of sets that are orthogonal to I, then there exists a proper forcing notion P that introduces an uncountable subset inside I.

ヨト イヨト ニヨ

Definition of P

Definition: $K \subseteq I$ is cofinal in I if it is cofinal in the almost inclusion ordering \subseteq^* . That is, for every $X \in I$ there is $Y \in K$ such that $X \subseteq^* Y$.

Let *P* be the poset of all pairs $p = (a_p, H_p)$ where $a_p \in I$ (so a_p is countable), and H_p is a countable collection of cofinal subsets of *I*.

Define $q \le p$ iff $a_p \subseteq a_q$, $H_p \subseteq H_q$, and the following condition holds. For every $K \in H_p$, if $e = a_q \setminus a_p$ then

$$\{X \in K \mid e \subseteq X\} \in H_q.$$

The first idea for a poset that introduces an uncountable set inside *I* is to force with (I, \subset) . given a countable $M \prec H(\kappa)$ and condition $a \in I \cap M$ define an increasing sequence $a_i \in I \cap M$ that successively enters each of the dense sets in *M*.

The problem: $\bigcup_{i < \omega} a_i$ may not be a member of *I*.

The first idea for a poset that introduces an uncountable set inside *I* is to force with (I, \subset) . given a countable $M \prec H(\kappa)$ and condition $a \in I \cap M$ define an increasing sequence $a_i \in I \cap M$ that successively enters each of the dense sets in *M*.

The problem: $\bigcup_{i < \omega} a_i$ may not be a member of *I*. Here we use the fact that *I* is a *P*-ideal. Pick some $E \in I$ so that for every $A \in I \cap M A \subset^* E$. Then when we define a_{i+1} we require not only $a_i \subset a_{i+1}$ but also $a_{i+1} \setminus a_i \subset E$.

The first idea for a poset that introduces an uncountable set inside *I* is to force with (I, \subset) . given a countable $M \prec H(\kappa)$ and condition $a \in I \cap M$ define an increasing sequence $a_i \in I \cap M$ that successively enters each of the dense sets in *M*.

The problem: $\bigcup_{i < \omega} a_i$ may not be a member of *I*. Here we use the fact that *I* is a *P*-ideal. Pick some $E \in I$ so that for every $A \in I \cap M A \subset^* E$. Then when we define a_{i+1} we require not only $a_i \subset a_{i+1}$ but also $a_{i+1} \setminus a_i \subset E$. New Problem: Perhaps for some dense set $D \in M$, if $b \in D \cap M$ is any condition such that $a = a_i \subset b$, then it is not the case that $b \subset E$ (the finite set $b \setminus E$ is non-empty).

< □ > < @ > < 注 > < 注 > . 注 のへで

The first idea for a poset that introduces an uncountable set inside *I* is to force with (I, \subset) . given a countable $M \prec H(\kappa)$ and condition $a \in I \cap M$ define an increasing sequence $a_i \in I \cap M$ that successively enters each of the dense sets in *M*.

The problem: $\bigcup_{i < \omega} a_i$ may not be a member of *I*. Here we use the fact that *I* is a *P*-ideal. Pick some $E \in I$ so that for every $A \in I \cap M A \subset^* E$.

Then when we define a_{i+1} we require not only $a_i \subset a_{i+1}$ but also $a_{i+1} \setminus a_i \subset E$.

New Problem: Perhaps for some dense set $D \in M$, if $b \in D \cap M$ is any condition such that $a = a_i \subset b$, then it is not the case that $b \subset E$ (the finite set $b \setminus E$ is non-empty). Solution: Declare E a "bad set"; let H be the collection of all bad sets. Then $H \in M$. Redefine your poset so that the pair (a, H) is a condition. Request that any extension of this condition is of the form (b, H, ...) so that $a \subseteq b$ AND $b \setminus a \in h$ for some $h \in H$.